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Abstract. \Vc usc singlc-cluster Monte Carlo simul3uons to m d y  the role of topological dcfccts 
in the thnedimensional classical Heisenberg model on simple cubic lattices of size up to 80’. 
By applying rraeiphring techniques to dme series penemed in Ihc vicinity of the approximate 
mfinitr-volumc vansition point K,. we obuin clear eeidcncc that the temperalure derivatiw 
of the werage dciecl density d(n)/dT behases qualiodrely like Ihe specific heat, i.e. both 
obsmablcs m finitc in the “inite-volume tinut This is in conulsl to Iesuls by L3u and 
Dasgupta who e.unpohed 3 diwrgcnt behaviour oid(n Id7 a1 K, from ~hulauons on lanicer 
of size up to 163 We obtain w e a k  evidence hl d n)/dT scales wth the same xitical exponent 
as the specific hex. As 3 b)prcdun of our simuluiocs, we oblun 3 very accurate cstimalc for 
the h a  r r /v  of thc specific-heal exponent with [he correlation-lcngh cxponcnr from 3 finile-sire 
scaling m3Jyar of the energ, 

1. Introduction 

It is well known that topological defects can play an important role in phase transitions [I, 21. 
Extensively studied examples of systems with point-like defects are the two-dimensional 
(2D) XY model [3] and defect models for 2D melting [2,4]. Recently, Lau and Dasgupta 
(LD) [5] have used Monte Carlo (Me) simulations to smdy the role of topological defects in 
the three-dimensional (3D) classical Heisenberg model, where the defects are also poiot-like 
objects with a binding energy that increases linearly with the separation [6]. Motivated by 
the importance of vortex points in the 2D XY model, LD tried to set up a similar pictorial 
description of the phase msi t ion  in the 3 D  Heisenberg model. Analysing their simulations 
on simple cubic (Se) lattices of size V = L3, with L = 8, 12 and 16, LD claimed that the 
temperature derivative oflhe average defect density, (n), diverges at the critical temperature 
Z like d(n)/dT - t - t ,  t = IT - Tc(/Tc, with an exponent $b GS 0.65. They further 
speculated that $b = 1 - B ,  where p 0.36 is the critical exponent of the magnetization, 
and then argued that (n) should behave like a ‘disorder’ parameter. 

At first sight, the existence of such a strong divergence of d(n)/dT seems unlikely, 
because the definition of defects is quasi-local. It is therefore more likely [7] that (n) 
should behave qualitatively like the energy and d(n)/dT like the specific heat, which is a 
finite quantity for the 3D Heisenberg model. 
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Using standard finitesize scaling VSS) arguments we hence expect to see on finite 
lattices either 

d(n)/dT = L * / ” f ( x )  (1) 

d(n)/dT = constant+La/”g(x) (2) 

or, if the second argument holds hue, 

where U -0.1 are the correlation length and specific heat exponents, 
respectively, x = tZ’/” is the FSs variable, and f ( x ) , g ( x )  are scaling functions. At fixed 
x, ansatz (1) predicts an approximate linear divergence in L, d(n)/dT - L*f” ~3 L .  On 
the other hand, because a is negative for the 3D Heisenberg model, ansatz (2) predicts 
a constant asymptotic value, d(n)/dT - constant. Hence for sufficiently large L a clear 
distinction between (1) and (2) should be observable. 

To decide between the two alternatives we have performed MC simulations on large 
lattices of size up to L = 80, employing the singleduster update algorithm [8] and 
reweighting techniques [PI. As a result we find unambiguous support for the second 
alternative, d(n)/dT - constant, as L -+ 00. 

As a byproduct of our simulations we numerically extrapolate 01/v from an FSS of the 
energy in close vicinity of the critical coupling Kc with a much higher accuracy than that 
obtained in recent high-precision MC studies [ 10,111. 

0.7 and 01 

2. The simulation 

The partition function of the Heisenberg model is given by 

where K = J/kBT is the (reduced) inverse temperature, si are three-dimensional unit 
vectors at the sites i of an sc lattice, and (i, j )  denotes nearest-neighbour pairs. Using the 
single-cluster update algorithm 181 we have simulated the partition function (3) for lattices 
of size V = L3 with L = 8, 12, 16,20,24,32,40,48,56,64,72,80 and periodic boundary 
conditions. Our main emphasis was on the defect density n = Cq2n1q1, where n l , n z , .  . . 
are defect densities of charge q = f l ,  f 2 , .  . . . To locate these charges we followed the 
definition of Berg and Liischer [12], according to which the charge qi. at the dual lattice 
site i” is given by 

1 l 2  

4= i d  
Ai qi. = - 

with 

(4) 

The Ai are the directed areas of spherical triangles on the unit 2-sphere with corners 
s1, ~ 2 . ~ 3 ,  whose sign is determined by signAi = sign@] . (s2 x 83)).  The spins si are 
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located at the vertices of the cube enclosing the dual site i* .  The four spins at each face of 
this cube are decomposed into two sets of three spins, giving rise to the twelve A; in (4). 
To define a particular decomposition we have introduced the face diagonals running from a 
site i to i + el +e*, i + e2 + 4, and i + e3 +el, respectively, with ei, i = 1,2,3 denoting 
unit vectors in the three coordinate directions. The spins at the comers of the so-defined 
triangles are numbered in a counter-clockwise sense relative to the outward pointing normals 
of the cube enclosing i’. The decomposition is obviously not unique, but we have checked 
that other conventions give, on average, the same charges within the error bars. For an sc 
lattice the distinction between i and i* is inessential, since the difference is only a uniform 
translation along the space diagonal. 

From the definition of qp, it is clear that a trivial upper bound on the magnitude of the 
lattice topological charge is qi. < 5. In our runs the highest topological charge observed 
was three, which occur;ed on the order of IO-’ per site and measurement; see table 1. The 
liieliiood of the appearance of the higher charges was probably too small for them to occur 
during our run times. 

Table 1. Measurement statistics at the simulation point KO = 0.6929 L is the linear lattice 
size; No is the number of cluster steps between measurements; Nmcu is the the number of 
measurements; zn is the integrated autocomelation time of the charge density; (e) is the energy 
density; ( E , , ] )  are the observed densities of dual cells with charge 141 and the total defect density 
(n)  is defined as (n) = (nl) + 4(nz) + 9(n3) + . . . . . ~ 

(n )  x 10 (nl) x IO (nz) x io4 (nl) x 108 
~ ~ ~ ~ ~ 

L No Nmcu G (4 
8 17 50178 1.2 1.9487(9) o.go5qis) 0.88090 6.13~ 7.78 

12 20 159575 1.6 1.9786(3) 0.9845(7) 0.95689 6.90 5.80 
16 40 64368 1.2 1.9905(3) 1.0170(9) 0.98838 7.16 7.21 
20 50 ~ 27670 1.3 1.9968(3) 1.0347(6) 1.0053 7.35 5.42 
24 50 ’ 20000 1.5 1.9998(2) 1.0431(6) 1.0136~ 7.38 9.04 
32 68 25403 1.5 2.0045(2) 1.0561(4) 1.0260 7.52 6.61 
40 74 21 765 1.9 2.0063(1) 1.0617(3) 1.0314 7.59 8.04 
48 93 21005 1.9 2.0074(1) 1.0646(3) 1.0342 7.61 7.83 
56 136 23795 1.6 2.0084(1) 1.0674(2) 1.0369 7.62 6.56 
64 200 26439 1.4 2.0090(1) 1.0691(1) 1.0385 7.64 7.18 
72 150 20000 1.8 2.0093(1) 1.0701(2) 1.0395 7.65 7.10 
80 200 25431 1.7 2.00962(4) 1.0709(1) 1.0403 7.66 6.77 

All runs were performed close to the approximate infinite-volume transition point 
KE = 0.6930, as determined in recent Mc studies [IO, 11,131 of this model. Since we wanted 
to have reference data we performed our simulation at the same coupling, KO = 0.6929, 
as in our study of 1111 which was close enough to K, to allow safe reweighting of our 
data. Because the computation of qp is quite complex and thus time consuming, we have 
performed many cluster update steps between measurements, adjusted in such a way that the 
(integrated) autocorrelation time of the chargedensity measurements is around rn M 1 - 2. 
Since it turned out that the (integrated) autocorrelation times rn and rx of the charge density 
and the magnetic susceptibility were roughly equal, we were able to guess the required 
measurement interval by extrapolating our previous results for rx 1111 to larger lattice sizes 
L.  The measurement statistics are given in table 1. While the statistics are comparable 
to those in our previous studies 1111, and much better than those of LD, we note, that our 
investigated lattices have much larger linear size up to L = 80, compared to L = 48 in our 
previous work, and compared to the largest size L = 16 of LD. For each run we recorded the 
time series of the energy density e(= E / V ) ,  the magnetization density m(= ICi & / / V )  
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and the charge densities nlqj. The resulting averages (e) ,  (n )  and (nj,~) can he found in 
table 1. 

To compute the specific heat C(= d(e)/dT), the thermal expansion coefficient C,(= 
Td(n)/dT) and the topological susceptibility x,(= d(n)/dp), where p is the ‘field‘ in a 
fugacity term /L xi. q: which one can imagine as adding to the energy in (3) and n is 
defined as n = nl + 4n2 + 9n3 + . . . , we used the relations 

C Holm and W Janke 

c = vK2((e’)  - (e)’) = V K Z ( e ;  e )  

C, = V K ( ( e n )  - ( e ) (n ) )  = V K ( e ;  n )  

xp = ~((2) - (n)’) = V(n;  n) .  

(6) 

(7) 

(8) 

To obtain results for the various observables U at K values in an interval around the 
simulation point KO = 0.6929, we applied the reweighting method [9]. Since we recorded 
the time series this amounts to computing 

with A K  = K - KO. To obtain errors we devided each run into 20 blocks and used standard 
jack-knife errors 1141. 

Table 2. Results for h e  matrix elements of the covariance matrix V ( 0 i :  Oj) ,  with 01 = Ke 
and 0 2  = n at K = 0.6930(% Kc). Also included are the eigenvalues A I ,  12 of the covnriance 
mauiX. 

L C  c, % *I A i  

8 2.177(18) 0.712(6) 0.369(3) 2.423(19) 0.1225(8) 
12 2.407(12) 0,8330) 0.43q2) 2.721(14) 0.1261(6) 
16 2.562(27) 0.908(10) 0.467(4) 2.900(30) 0.1283(9) 
20 2.651(36) 0.951(14) 0.486(6) 3.009(40) O.l277(7) 
24 2.752(40) 0.993(17) 0.506(8) 3.128(47) 0.1297(12) 
32 2.832(38) 1.027(14) 0.521(6) 3.223(43) 0.1308(12) 
40 2.970(45) 1.081(16) 0.542(7) 3.382(51) 0.1300(9) 
48 2.977(44) 1.097(18) 0.553(8) 3.400(51) 0.1304(13) 
56 3.142(35) 1.157(12) 0.576(5) 3587(38) 0.1309(13) 
64 3.181(30) 1.173(10) 0.5796) 3.631(33) 0.1286(10) 
72 3.142(555) 1.155(19) 0.574(7) 3.585(62) O.I315(14) 
80 3.182(49) 1.169(16) 0.579(6) 3.630(53) 0.1307(12) 

The results for the quantities in (6)+3) at K, = 0.6930 are collected in table 2. Also 
given are the eigenvalues hl , h2 of the 2 x 2 covariance matrix M of e and n with elements 
A411 = V K Z ( e ;  e ) ,  Mlz = A421 = V K ( e ;  n )  and MZZ = V(n; n ) .  

3. Results 

By applying (9) we have determined the temperature dependence of the quantities in (6H8). 
For small lattices, C, has its peak location at temperatures larger than T,, in contrast to C, 
which peaks at temperature values smaller than T,. With increasing lattice size, however, 
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Figure 1. (a) C, = Td(n)/dT and (b)  Be specific heat C versus K for lattices of size L = 12. 
40.12. The values were obtained by reweighting of the mils at KO = 0.6929. 

we observe a strong correlation between C, and C, that is both quantities develop a smooth 
peak at roughly the same temperature (T < C), see figure 1. In contrast to C, the peak 
locations of C, scale non-monotonically with a crossover at L 

We focused first on the scaling behaviour of C, at our previous estimate of the 
critical coupling Kc = 0.6930, obtained from the crossings of the Binder parameter 

20. 

U = 1 - (m4)/3(mz)2 [Ill. Our new data for U on the large lattices confirmed the 
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constancy of our previous result of U* = 0.6217(8) and hence our estimate for Kc. We 
checked first a scaling ansatz for C9 of the form 

C Holm and W Janke 

(10) 

where C f g  is a regular background term which is assumed to be independent of lattice size 
[15]. Note that this ansatz covers both scaling hypotheses (1) and (2). The resulting fit 
shown in figure 2(a) yields a'/u = -0.401(61), CTg = 1.50(8) and a0 = 1.82(6) with a 
quality factor Q = 0.30 [16]. The good quality of the fit rules out the divergence predicted 
by ansatz (1) of LD, and strongly favours (2) which predicts a finite asymptotic value for 
C,. Only if one assumes that the FSS behaviour sets in at extremely large lattice sizes, could 
one still attain an assertion of the form (l), but with the consequence of an extremely small 
exponent e. We also 'hied to reproduce the exponent 0.65 of LD by selecting only 
their lattices sizes and fitting a straight l i e  to our fust three data points but even then we 
obtain a much smaller value of @/U 0.36(3), leading to @ % 0.25(3). We think that this 
discrepancy with the result of LD is partly due to our higher statistics and partly due to the 
fact that we obtained C, through a thermodynamic derivation, which normally gives better 
results than the numerical differentiation used by LD. 

Because ansatz ( Z ) ,  which was based on the assumption that (n)  should behave l i e  
the energy, fits so well, one can ask whether a' is equal to the specific-heat exponent a. 
Using our earlier MC result of U = 0.704(6) [ll], we get a value of a' = -0.282(46), 
which at first glance, does not strongly support this conjecture. The best field-theoretical 
estimates are U = 0.705(3), a = -O.lI5(9) anda/u = -0.163(12) (resummed perturbation 
series [17]), while our earlier M c  study [ll] yielded U = 0.704(6), a = -0.112(18) and 
a/u = -0.159(24). However, the accuracy of the values of a is somewhat misleading 
because they were obtained from hyperscaling, OL = 2 - 3u. The directly measured values 
have much larger error bars, for example a/v = -0.30(6) [IO] and a/u = -0.33(22) [ll]. 

To compare a' directly with the measured specific-heat exponent of the present MC 
simulation, we fitted C to 

C - CRP - aoLm'/Y 
9 -  9 

C = C"fi - boLU/' (11) 

with a constant background term C"g [U]. The resulting fit in figure 2(b) yields a/u = 
-0.225(80), Greg = 4.8(7) and bo =~4.1(5) with Q = 0.55 leading to a = -0.158(59). 
These values are in very good agreement with the hyperscaling prediction, but it is 
noteworthy that there is a tendency for the values to come out too large. 

Of course, a fit of a divergent quantity, like the first derivative dC,/dT, for example, 
is, in principle, numerically much easier to handle. We tried to do this for dC9/dT and 
dC/dT at K,, and observed the expected divergent scaling behaviour, but unfortunately the 
statistical errors of the thud cumulants involved turned out to be much too large to allow 
for meaningful fits. 

Other estimates for a and a' can be obtained by means of fits of (e)  and (a), which 
again, qualitatively look very alike. According to (1 1). we should have, on periodic lattices, 
a scaling behaviour for the energy density (e) of the form [15,18] ' 

and because of (10) the topological charge density (n) should then accordingly scale like 

(n) = (n)"' - cDpW", (13) 
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0 20 40 L 60 80 100 

Figure 2. (a)  C,, (b) C and (c) xp at K = 0.6930(% Kc) as a function of the lattice size L. 
The full curves show the best nonlinear three-parameter fits to the data. 

Fits of these quantities at Kc = 0.6930, shown in figure 3, yield (a' - 1 ) j u  = -1.547(15), 
( n Y g  = 0.1074(1) and CO = 0.42(2), with Q = 0.30 and (a - l)/u = -1.586(19), 
(e)"g = 2.0106(1) and do = 1.68(8), with Q~ = 0.25. This results in a'ju = -0.127(27), 
a' = - 0.089(20), a/u = -0.166(31) and a = -0.117(23). The results for a and a/v 
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Figure 3. (a) (n) and (b) (e) al K = 0.6930(% K.) as a function of L, together with the best 
nonlinear three-parameter fib to the data. 

are in excellent agreement with the hyperscaling prediction, and have not been directly 
measured before with such a high precision. We attribute this not only to our large lattice 
sizes, but also to the fact that we us@ fits of (e) instead of C.  The results for a’ and 
a ’ /u  are now lower than those obtained in (IO), but now they are almost consistent with 
the values for cz and a/u. However, it is still slightly puzzling that both estimates for the 
exponent cz‘lu obtained from the fits (10) and (13) disagree in their respective error range. 
We attribute this partly to the unknown FSS behaviour of the regular background term (n)=s 
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and partly to the fact that the statistical errors of the three-parameter fits should be taken 
with great care. 

We looked further at the scaling behaviour of x,, defined in equation (8). A first look 
at the plots suggests to try again a scaling ansatz of the form 

From a three-parameter fit we obtain a"/v = -0.554(57), xfg = 0.67(2) and eo = 0.95(6) 
with Q = 0.41, leading to a" =--0.390(44). This time it seems already very nnliely that 
a" is equal to the specific-heat exponent. However, if one discards the two lowest L values 
from the fit, one observes a clear trend towards a lower a"-value, but with the drawback of 
increased error bars and no improvement in x2/DOF (per degree of freedom). 

We also checked in all our other fits whether there were corrections to the FSS, by 
discarding successively the data points for L = 8 and L = 12. We observed in all quantities 
a trend to the value of a/v predicted by hyperscaling, but at the price of much larger error 
bars. Also the X ~ / D O F  did not improve. We checked further for confluent corrections [I9], 
by including a term of the form U ~ L - ~ ,  with o = A/v fixed at the literature value 0.78 
[17]. But again the fits were too unstable to give conclusive results. 

We also tested whether our results depended strongly on the choice of K,, by repeating 
the fits of a~ quantities at K~ f 0.0002.  he resulting parameters were always consistent 
with the values at KE in the one-u range. 

To get a clearer picture we looked further at the scaling behaviour of the eigenvalues 
of the covariance matrix M of e and n, defined by equations (6)-(8), which give two 
uncorrelated observables A1 and 12. Again we used a scaling ansatz of the form 

We obtained al/v = -0.273(73), AYg = 5.1(5), and a1 = 4.7(2), with Q = 0.49 and 
az/v = -1.45(42), AYg = 0.1307(8) and a2 = 0.2(2), with Q = 0.60, leading to 
a1 = -0.192(54) and a2 = -1.02(31). This suggests 011 FX a and a2 % a - 1. The 
quality of the fits can be inspected in figure 4. 

Because AI  + A2 = C + x,,  then x ,  should scale. at least in part, with an exponent cuz. 
The existence of an uncorrelated observable which scales with an exponent different from 
a suggests that we see in our fits of C, and x, corrections to the FSS, a new scaling fiild or 
a scaling behaviour with some rationale multiple of a/u. As long as there is no satisfactory 
theory for the scaling of topological quantities,~however, one cannot decide between these 
alternatives. 

4. Concluding remarks 

We have shown that in the three-dimensional classical Heisenberg model the topological 
defect density (n) and its temperature derivative C, behave qualitatively like the energy (e)  
and its temperature derivative C. In particular, we can reject the conjecture of LD that C, 
diverges with a new critical exponent 3 and we find no evidence for an unusual behaviour 
for the defects near the phase transition. 

Rather, our simulations indicate that C, also behaves quantitatively like the specific 
heat, i.e. it scales like (2). We obtain weak evidence that, asymptotically for large L, the 
scaling of C, is govemed by the specific-heat critical exponent a. Still, it cannot be ruled 
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0 20 40  L 60 80 100 

F l m  4. (U) A I  and (b) A2 at K = 0.6930(% KJ as a function of L. The best nonlinear 
three-parameter fin to the data are also included. 

out that the scaling of C, also involves a new exponent belonging to a new scaling field. 
For the topological susceptibility x,, we find that it also remains finite, and that it can be 
fitted with an ansatz of the form (2) as well, but that its scaling exponent deviates from a. 
Our fits of the eigenvalues hi of the covariance manix seem to indicate that C, md xp are 
a mixture of a part which scales with a and a part which scales according to a - 1. 

Finally, the present fits of the specific heat at Kc yielded a value of cf of better accuracy 
and in better agreement with the hyperscaling value than fits of the specific-heat maxima 
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as used in previous works [lo, 1 I], which we attribute to our large lattice sizes, the larger 
number of available data points, and to the fact, that our data and fit were performed 
extremely close to the critical temperature. Moreover, by fitting the energy at K, to 
equation (12), we obtained an estimate for 01/11 with a precision.unprecedented by direct 
numerical MC simulations and in accuracy comparable to hyperscaling predictions. 
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