IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Monte Carlo study of topological defects in the 3D Heisenberg model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 2553
(http://iopscience.iop.org/0305-4470/27/7/030)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:16

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

. Phys. A: Math, Gen. 27 (1994) 2553-2563. Printed in the UK

Monte Carlo study of topological defects in the 3p Heisenberg
model*

Christian Holm{ and Wolfhard- Janke}

t Institut fiir Theoretische Physik, Freie Universitit Berlin, Arnimallee 14, 14195 Berlin,
Germany

1 Institat fiir Physik, Johannes Gutenberg-Universitit Mainz, Staudinger Weg 7, 55099 Mainz,
Germany

Received 23 June 1993

Abstract. ‘We use single-cluster Monte Carlo simulations to study the role of topological defects
in the three-dimensional classical Heisenberg model on simple cubic lattices of size ap to 803
By applying reweighting techniques to time series generated in the vicinity of the approximate
infinite-volume transition point K., we obtain clear evidence that the temperature derivative
of the average defect density d{x)/dT behaves gualitatively like the specific heat, ie. both
observables are finite in the infinite-volume lmit, This is in contrast to fesults by Lau and
Dasgupta who extrapolated a divergent behaviour of d{n}/dT at K. from simulations on lattices
of size up to 16°. We obtain weak evidence that d{n)}/dT scales with the same critical exponent
as the specific heat. As 2 byproduct of our simulations, we obtain a very accurate estimate for
the ratio e /v of the specific-heat exponent with the correlation-length exponent from a finite-size
scaling analysis of the energy.

1. Intreduction

It is well known that topological defects can play an important role in phase transitions [1, 2].
Extensively studied examples of systems with point-like defects are the two-dimensional
2p) XY model [3] and defect models for 20 melting [2,4]. Recently, Lau and Dasgupta
(LD} [5] have used Monte Carlo (MC) simulations to sindy the role of topological defects in
the three-dimensional (3Dy classical Heisenberg model, where the defects are also poigt-like
objects with a binding energy that increases linearly with the separation [6]. Motivated by
the importance of vortex points in the 2D XY model, LD tried to set up a similar pictorial
description of the phase transition in the 30 Heisenberg model. Analysing their simulations
on simple cubic (SC) lattices of size ¥V = L3, with L = 8, 12 and 16, LD claimed that the
temperature derivative of the average defect density, {n), diverges at the critical temperature
T, like d{n)/dT ~ t¥, t = |T — T,|/T., with an exponent ¢ ~ 0.65. They further
speculated that ¢ = 1 — 8, where 8 ~ 0.36 is the critical exponent of the magnetization,
and then argued that (n) should behave like a ‘disorder’ parameter.

At first sight, the existence of such a strong divergence of d{n}/dT seems uvnlikely,
because the definition of defects is quasi-local. It is therefore more likely [7] that {n}
should behave qualitatively like the energy and d{z}/dT like the specific heat, which is a
finite quantity for the 30 Heisenberg model.
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Using standard finite-size scaling (FSS) arguments we hence expect to see on finite
lattices either

d{n)/dT = L¥" f (x) (1
or, if the second argument holds true,
d(n)/dT = constant+L*"g(x) ¢))

where v = 0.7 and o & —0.1 are the correlation length and specific heat exponents,
respectively, x = tL/V is the FSS variable, and f(x), g(x) are scaling functions. At fixed
x, ansatz (1) predicts an approximate linear divergence in L, d{n}/dT ~ L¥/* ~ L. On
the other hand, because « is regative for the 3D Heisenberg model, ansatz (2) predicts
a constant asymptotic value, d(n}/dT ~ constant. Hence for sufficiently large L a clear
distinction between (1) and {2} should be observable.

To decide between the two alternatives we have performed MC simulations on farge
lattices of size up to L = 80, employing the single-cluster update algorithm [8] and
rewsighting techniques [9]. As a result we find unambiguous support for the second
alternative, d{n}/dT ~ constant, as L — ©o.

As a byproduct of our simulations we numerically extrapolate ¢/v from an Fss of the
energy in close vicinity of the critical coupling K, with a much higher accuracy than that
obtained in recent high-precision MC studies [10,11].

2. The simulation

The partition function of the Heisenberg model is given by
de;
Z= U[f 74—;] exp(—K E) E=

where £ = J/kpT is the (reduced) inverse temperature, s; are three-dimensional unit
vectors at the sites I of an SC lattice, and {i, j) denotes nearest-neighbour pairs. Using the
single-cluster update algorithm [8] we have simulated the partition function (3) for lattices
of size V = L? with L = 8, 12, 16, 20, 24, 32, 40, 48, 56, 64, 72, 80 and periodic boundary
conditions. Qur main emphasis was on the defect density n = Zqzmql, where nri,no, ...
are defect densities of charge ¢ = +1,+2,.... To locate these charges we followed the
definition of Berg and Liischer [12], according to which the charge g;- at the dual lattice
site i* is given by .

(1—s;:-3)) (3)
N )

12
A @)
1

_ 1
e = 2
with

14 51-8+82-834583-8
NI+ 515203 +82-8350(1 + 83 -81)

cos($4;) =

&)

The A; are the directed areas of spherical triangles on the unit 2-sphere with corners
81, 82, 53, whose sign is determined by sign A; = sign(s; - (s3 x 83)). The spins s; are
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located at the vertices of the cube enclosing the dual site i*. The four spins at each face of
this cube are decomposed into two sets of three spins, giving rise to the twelve A; in (4).
To define a particular decomposition we have introduced the face diagonals running from a
site [ to i L er+es, i +ey+e;, and i 4 e3 4 e, respectively, with e;; i = 1, 2, 3 denoting
unit vectors in the three coordinate directions. The spins at the corners of the so-defined
triangles are numbered in a counter-clockwise sense relative to the outward pointing normals
of the cube enclosing i*. The decomposition is obviously not unique, but we have checked
that other conventions give, on average, the same charges within the error bars. For an $C
lattice the distinction between i and {* is inessential, since the difference is only a uniform
translation along the space diagonal.

From the definition of g;«, it is clear that a trivial upper bound on the magnitude of the
lattice topological charge is g < 5. In our runs the highest topological charge observed
was three, which occurred on the order of 10~ per site and measurement; sec table 1. The
likelihood of the appearance of the higher charges was probably foo small for them to occur
during our run times.

Table 1. Measurement statistics at the simulation point Ky = 0.6929: L is the linear laftice
size; Ny is the number of cluster steps between measurements; Nmeas i the the number of
measurements; t, is the integrated antocorrelation time of the charge density; {¢) is the energy
density; (g} are the observed densities of dual cells with charge |g| and the total defect density
{n) is defined as (n} = {m) + 4lna) +9n3) + - .

L Ny Nuew m  {e) {n) x 10 ) x 10 (m) x 10*  (na) x 108
g 17 50178 12 19487(9)  09054(18)  0.88090  6.13. 7.78
12 2 159575 1.6  19786(3)  09845(7) 095680 690 5.80
16 40 64368 12 1.9905(3)  10170¢9) 098838  7.16 721
20 50 . 27670 13 19968(3)  1.034%6)  1.0053 735 5.42
24 50 20000 15  19998(2)  1.0431(6)  1.0136 7.38 9.04
32 68 25403 15  20045(2)  1.0561¢4)  1.0260 752 6.61
40 74 21765 19  20063(1)  1.061%3) 1.0314 7.59 8.04
48 93 21005 19  20074(1)  1.0646(3)  1.0342 761 7.83
56 136 23795 16  20084(1) 106742  1.0369 7.62 6.56
64 200 26439 14 20090(1) 106911}  1.0385 7.64 7.18
72 150 20000 1.8  2.0093(1)  LOT0LZ)  1.0395 7.65 7.10
80 200 25431 17 200962(4)  1.0709¢1) 1.0403 7.66 6.77

All runs were performed close to the approximate infinite-volume transition point
K. = 0.6930, as determined in recent MC studies [10, 11, 13] of this model. Since we wanted
to have reference data we performed our simnlation at the same coupling, Ko = 0.6929,
as in our study of [11] which was close enough to X to allow safe reweighting of our
data. Because the computation of g;« is quite complex and thus time consuming, we have
performed many cluster update steps between measurements, adjusted in such a way that the
(integrated) autocorrelation time of the charge-density measurements is around 7, ~ 1 — 2,
Since it turned out that the (integrated) autocorrelation times ©, and z, of the charge density
and the magnetic susceptibility were roughly equal, we were able to guess the required
measurement interval by extrapolating our previous results for 7, [11] to larger lattice sizes
L. The measurement statistics are given in table 1. While the statistics are comparable
to those in our previous studies [11], and much better than those of LD, we note, that our
investigated lattices have much larger linear size up to [ = 80, compared to L =48 in our
previous work, and compared to the largest size L = 16 of LD. For each run we recorded the
time series of the energy density e(= E/V), the magnetization density m(= |}, s;|/ V)
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and the charge densities 7). The resulting averages (e}, (n} and {n,) can be found in
table 1.

To compute the specific heat C(= d{e)/dT), the thermal expansion coefficient C;(=
Td{n}/dT) and the topological susceptibility xq(= d{n)/du), where x is the ‘field’ in a
fugacity term p 3 ;. q:?, which one can imagine as adding to the energy in (3) and n is

defined as n = ny + 4ny + 9n3 4 ..., we used the relations
C = VE({&%) — (&) = VK{e; e) 6)
Cy = VK ({en) ~ {e){n)) = VK (e; n) 0!
Xg = V({n?) — {n)’) = Vim; ny. ®)

To obtain results for the various observables O at K values in an interval arcund the
simulation point Ky = 0.6929, we applied the reweighting method [9]. Since we recorded
the time series this amounts to computing ‘

(Oe™8KE) |,

(©O)lx =~ —zery

®

|Ko

with AKX = K — K. To obtain errors we devided each run into 20 blocks and used standard
jack-knife errors [14].

Table 2. Results for the matrix elements of the covariance matrix V{0;; 0;), with 0| = Ke
and 07 =n at K = 0.6930(~ K;). Also included are the eigenvalues Aj, Az of the covariance
matrix, ‘

L c Cq xg A A

g 2.177(18} 0.712(6) 0.368(3) 2.423(19) 0.1225(8)
12 2.407(12) 0.833(5) 0.430(2) 2.721(14) 0.1261(6)
15 2.562(27} 0.908(10) 0.467(4) 2.500030) 0.1283(%)
20 2.651(36) 0.951(14) 0.486(6) 3.009(40) 0.127HT)
24 2.752(40) 0.993(17) 0.506(8) 3.128(47) 0.1297(12)
32 2.832(38) 1.027(14) 0.521(6) 3.223(43) 0.1308(12)
40 2.970(45) 1.081(16) 0.542(7) 3.382(51) 0.1300(9)
48 2.977(44) 1.097(18) 0.553(8) 3.400(51) 0.1304(13)
56 3.142(35) L157(12) 0.576(5) 3.587(38) 0.1309(13)
64 318130 1.173(10) 0.579(5) 3.631(33) 0.1286(10)
72 3.142(55) 1.155(19) 0.574(7) 3.585(62) 0.1315(14)
80 3.182(4%) 1.169(16) 0.579(6) 3.630(53) 0.1307(12)

The results for the guantities in (6)—(8) at K, = 0.6930 are collected in table 2. Also
given are the eigenvalues A1, A, of the 2 x 2 covariance matrix M of e and n with elements
My = VK% e), Myp = Mo = VK {e; n) and Moy = V{n; n).

3. Results

By applying (9) we have determined the temperature dependence of the quantities in (6)—(8).
For small lattices, C; has its peak location at temperatures larger than T, in contrast to C,
which peaks at temperature values smaller than 7. With increasing lattice size, however,
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Figure 1. (a) C; = Td{n)/d7T and (§) the specific heat C versus X for lattices of size L = 12,
40, 72. The values were obtained by reweighting of the runs at Ko = 0.6929.

we observe a strong correlation between C, and C, that is both quantities develop a smooth
peak at roughly the same temperature (T < T¢), see figure 1. In contrast to C, the peak
locations of C, scale non-monotonically with a crossover at L =20,

We focused first on the scaling behaviour of C, at our previous estimate of the
critical coupling K. = 0.6930, obtained from the crossings of the Binder parameter
U = 1= (m"/3(m?? [11]. Our new data for U on the large lattices confirmed the
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constancy of our previous result of I/* = (0.6217(8) and hence our estimate for K;. We
checked first a scaling ansatz for C, of the form

Cq = C;cg - aoLar/u (10)

where Cy* is a regular background term which is assumed to be independent of lattice size
[15]. Note that this ansatz covers both scaling hypotheses (1) and (2). The resulting fit
shown in figure 2(a) yields o/ /v = —0.401(61), C5® = 1.50(8) and ay = 1.82(6) with a
quality factor O = 0.30 [16]. The good quality of the fit rules out the divergence predicted
by ansatz (1) of LD, and strongly favours (2) which predicts a finite asymptotic value for
C,. Only if one assumes that the FSS behaviour sets in at extremely large lattice sizes, could
one still attain an assertion of the form (1), but with the consequence of an extremely small
exponent ¥. We also ‘tried to reproduce the exponent i # 0.65 of LD by selecting only
their lattices sizes and fitting a straight line to our first three data points but even then we
obtain a much smaller value of /v & (0.36(3), leading to ¥ A~ 0.25(3). We think that this
discrepancy with the result of LD is partly due to our higher statistics and partly due to the
fact that we obtained C, through a thermodynamic derivation, which normally gives better
results than the numerical differentiation used by LD.

Because ansatz (2), which was based on the assumption that (n} should behave like
the energy, fits so well, one can ask whether &' is equal to the specific-heat exponent o,
Using our earlier MC result of v = 0.704(6) [11], we get a value of &' = —0.282(46),
which at first glance, does not strongly support this conjecture. The best field-theoretical
estimates are v = (0.705(3), & == —0.115(9) and /v = —0.163(12) (resummed perturbation
series [17]), while our earlier MC study [11] yielded v = 0.704(6), & = —0.112(18) and
o/v = —0.159(24). However, the accueracy of the values of « is somewhat misleading
because they were obtained from hyperscaling, ¢ = 2 — 3v. The directly measured values
have much larger error bars, for example /v = —0.30(6) [10] and a/v = —0.33(22) [11].

To compare o directly with the measured specific-heat exponent of the present MC
simulation, we fitted C to

C = C™ — pgL™" (11)

with a constant background term C™® [15]. The resulting fit in figure 2(b) vields a/v =
—0.225(80), C™F = 4.8(7) and by = 4.1(5) with @ = 0.55 leading to & = —0.158(59).
These values are in very good agreement with the hyperscaling prediction, but it is
noteworthy that there is a tendency for the values to come out too large.

Of course, a fit of a divergent quantity, like the first derivative dC,/dT, for example,
Is, in principle, numerically much easier to handle. We tried to do this for dCy/dT and
dC/dT at K., and observed the expected divergent scaling behaviour, but unfortunately the
statistical errors of the third cumulants involved turned out to be much too large to allow
for meaningful fits, .

Other estimates for o and ¢’ can be obtained by means of fits of {e¢} and {n), which
again, qualitatively look very alike. According to (11), we should have, on periodic lattices,
a scaling behaviour for the energy density {e) of the form [15, 18]

(e) = (e)™8 — dp L@/ (12)
and because of {10) the topological charge density {n) should then accordingly scale like

(n) = {n)™8 — ey L@V, (13)
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Figure 2. (a) Cy, (b) C and (¢} x4 at K = 0.6930(= K;) as a function of the lattice size L.
The full curves show the best nonlinear three-parameter fits to the data.

Fits of these quantities at K. = 0.6930, shown in figure 3, yield (&' — 1)/v = ~1.547(153),
{n)=E = 0.1074(1) and cp = 0.42(2), with Q@ = 0.30 and (@ — 1)/v = —-1.586(19),
{e)™t = 2.0106(1) and dp = 1.68(8), with Q = 0.25. This results in o' /v = —-0.127(27),
o = —0.089(20), /v = —0.166(31) and ¢ = —0.117(23). The results for o and a/v
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Figare 3. (a) (n) and (b) (e} at K = 0.6930(~ K.) as a function of L, together with the bagt
nonlinear three-parameier fits to the data,

are in excellent agreement with the hyperscaling prediction, and have not been directly
measured before with such a high precision. We attribute this not only to our large lattice
sizes, but also to the fact that we used fits of (e} instead of C. The results for o’ and
o’ /v are now lower than those obtained in (10), but now they are almost consistent with
the values for & and «/v. However, it is still slightly puzzling that both estimates for the
exponent o’ /v obtained from the fits (10) and (13) disagree in their respective error range,
We attribute this partly to the unknown F5$ behaviour of the regular background term (n)™8
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and partly to the fact that the statistical errors of the three-parameter fits should be taken
with great care. . .

We looked further at the scaling behaviour of x,, defined in equation (8). A first look
at the plots suggests to try again a scaling ansatz of the form

Xe = X2F — el /. : (14)

From a three-parameter fit we cbtain o /v = —0.554(57), x5 ° = 0.67(2) and ey = 0.95(6)
with @ = 0.41, leading to " =—0.390{44). This time it seems already very unlikely that
«” is equal to the specific-heat exponent. However, if one discards the two lowest L values
from the fit, one observes a clear trend towards a lower «”-value, but with the drawback of
increased error bars and no improvement in x2/ DOF (per degree of freedom).

‘We also checked in all our other fits whether there were corrections to the FSS, by
discarding successively the data points for L = 8 and L = 12. We observed in all quantities
a trend to the value of /v predicted by hyperscaling, but at the price of much larger error
bars. Also the x2/ DOF did not improve. We checked further for confluent corrections [19],
by including a term of the form a; L%, with @ = A/v fixed at the literature value (.78

“[17]. But again the fits were too unstable to give conclusive results.

We also tested whether our results depended strongly on the choice of K., by repeating
the fits of all quantities at K £ 0.0002. The resulting parameters were always consistent
with the values at X, in the one-¢ range.

To get a clearer picture we looked further at the scaling behaviour of the eigenvalues
of the covariance matrix 3 of e and n, defined by equations (6)-(8), which give two
uncorrelated observables A and As. Again we used a scaling ansatz of the form

A= AT — g LY, (15)

We obtained oy /v = ~0.273(73), A® = 5.1(5), and a; = 4.7(D), with Q = 0.49 and
ayf/v = —1.45(42), A;° = 0.1307(8) and a» = 0.2(2), with Q = 0.60, leading to
oy = —0.192(54) and o = —1.02(31). This suggests ¢; ~ o and o & o — 1. The
quality of the fits can be inspected in figure 4.

Because A; + A2 = C + g, then x, should scale. at least in part, with an exponent ao.
The existence of an uncorrelated observable which scales with an exponent different from
o suggests that we see in our fits of C, and y, corrections to the FSS, a new scaling field or
a scaling behaviour with some rationale multiple of /v, As long as there is no satisfactory
theory for the scaling of topological quantities, however, one cannot decide between these

" alternatives.

4. Concluding remarks

We have shown that in the three-dimensional classical Heisenberg model the topological
defect density {#) and its temperature derivative C; behave qualitatively like the energy {e)
and its temperature derivative C. In particular, we can reject the conjecture of LD that C,
diverges with a new critical exponent 9 and we find no evidence for an unusual behavmur
for the defects near the phase transition.

Rather, our simulations indicate that C, also behaves quanul:atwely like the specific
heat, i.e. it scales like (2). We obtain weak evidence that, asymptotically for large L, the
scaling of C, is governed by the specific-heat critical exponent ¢. Still, it cannot be ruled
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Figure 4. (@) A and (b) A2 at K = 0.6930(~ K_) as a function of L. The bast nonlinear
three-parameter fits to the data are also included.

out that the scaling of C, also involves a new exponent belonging to a new scaling field.
For the topological susceptibility x,, we find that it also remains finite, and that it can be
fitted with an ansatz of the form (2) as well, but that jts scaling exponent deviates from .
Our fits of the eigenvalues A; of the covariance matrix seem to indicate that C, and x, are
2 mixture of a part which scales with « and a part which scales according to & - 1.
Finally, the present fits of the specific heat at K yielded a value of & of better accuracy
and in better agreement with the hyperscaling value than fits of the specific-heat maxima
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as used in previous works [10, 11], which we attribute to our large lattice sizes, the larger
number of available data points, and to the fact, that our data and fit were performed
extremely close to the critical temperature. Moreover, by fitting the energy at K. to
equation {12), we obtained an estimate for «/v with a precision unprecedented by direct
numerical MC simulations and in accuracy comparable to hyperscaling predictions.
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